	Gasdynamik		
Düsenströmung ((sentrope)		C ₁ C ₂ h ₁	Geschw. im Behälter = 0 = m/s Geschw. an der Düse = m/s spez Enthalpie im Beh = J/kgk
	$c_2 = \sqrt{2 \cdot \Delta h} \qquad \Delta h = h_1 - h_2$	h ₂	spez Enthalpie an Duse J _{J/kgK} (h-s-Diagramm)
ς, ς, ς, β, β, γ, β, γ,	$\Delta h = c_{pm} \cdot \Delta t$; $\Delta t = T_1 - T_2$	T ₁	Temp im Behalter K Temp an der Düse
# P1 reibungsbehaftet	$C_{2} = \sqrt{2 \cdot c_{pm} \cdot T_{1} \cdot \left[1 - \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\chi - 1}{\chi}}\right]}$	C ₂ C _{pm} P ₁ P ₂ X T ₁	Geschw an der Düse m/s mitl speziWarmekap S/58 J/kgk Druck im Behalter bar Druck an der Düse 1 Verhalnis speziWarmeka 1 Temperatur im Behalter m/s
(satrop) 2	$c_{2\; { m fakt.}} = \zeta_{ m D} \cdot c_{2}$ $c_{2\; { m max.}} = \sqrt{2 \cdot c_{ m pm} \cdot T_{4}}$ bei Ausströmen ins Vakuum	C _{2max} C _{2fakt} ζ _D T ₂	max Düsengeschw. wirkl: Düsengeschw. Düsenfaktor,≤0,97 Temperatur an der Düse
Gleichung nach Seint⊧ ∫etnanti	$c_2^2 - c_1^2 = 2 \cdot \frac{\chi}{\chi - 1} \cdot p_1 \cdot v_1 \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\chi - 1}{\chi}} \right]$		
beiko₂≪o₁	$c_2 = \sqrt{2 \cdot \frac{\chi}{\chi - 1} \cdot p_1 \cdot v_1 \cdot \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{\chi - 1}{\chi}}\right]}$		
Massensirom bei p ≕ consi.	$\dot{m} = \frac{A \cdot c}{v} = \text{const.} = \dot{V} \cdot \rho$; $v = \frac{1}{\rho}$		Massenstrom kg/s Kanalquerschnili m² spez Volumen m³/kg spezielle Gaskora \$ 500 J/kgK
	$\dot{m} = A \cdot \psi_s \cdot \sqrt{2 \cdot \frac{p_t}{v_1}} = \text{const.}$; $v_t = \frac{T_t \cdot R}{p_t}$	1	Dichte kg/m³ Volumenstrom m³/s
	bei Wasserdampf v₁ aus hs-Diagram	C = C2	Drück 1 bar=10 N/m Pa Geschwindigkeit m/s Temperatur K
Durchflußtunktion	$\Psi_{s} = \sqrt{\frac{\chi}{\chi - 1} \cdot \left[\left(\frac{p}{p_{i}} \right)^{\frac{2}{\chi}} - \left(\frac{p}{p_{i}} \right)^{\frac{\chi + 1}{\chi}} \right]}$	Ψs P	Durchflußfunktion
Laval Druckverhallinis	$\frac{p_{L}}{p_{1}} = \left(\frac{2}{\chi + 1}\right)^{\frac{\chi}{\chi - 1}} \qquad P_{L} = \left(\frac{P_{L}}{P_{A}}\right) P_{A}$	P _L P ₁ χ	Drucken derengsten St. bar Druck bar Sa61 1
Durchilußikt am engsten Durchmesser ⇒bel√ _{smax} ⇔A _{mb}	$\psi_{s \text{max}} = \left(\frac{2}{\chi + 1}\right)^{\frac{1}{\chi - 1}} \cdot \sqrt{\frac{\chi}{\chi + 1}}$		
Horide: - Luit: zwejatomige Gase übern: Wasserd, 3-at: Gase	1,3 0,546 0,473		0.4 1.607 1.3 1.35 1.35
Sattdampf Naßdampf	1,135 0,577 0,450 χ = 1,035+0,1x \Rightarrow berechnen.		District Park Park Park Park Park Park Park Park

Laval-Düse $M_0 < 1$ $M_0 = 1$ $M_0 > 3$ $M_0 = 1$ $M_0 = 1$ $M_0 > 3$ $M_0 = 1$ $M_0 = 1$ $M_0 = 1$ $M_0 > 3$ $M_0 = 1$	$A_{min} = \frac{\dot{m}}{\Psi_{smax} \cdot \sqrt{2}}$ $T_{2} = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\chi-1}{\chi}} \cdot T_{1}$	$\frac{\overline{p_1}}{v_1}$, δ	$v_i = \frac{T_1 \cdot R}{p_i}$	m° A _{min} V₁ R P₁ 1 1 Ψ max P2 T₂	Massenstrom Lavalquerschnitt (engster) spez. Volumen im Beh spezielle Gaskonst S.60 Druck im Beh bar=10 ⁵ N/m ³ Temperatur im Beh max. Durchflußstrom Druck am Düsenquersch Temp Düsenquerschn.	kg/s m² m³/kg J/kgK Pa K 1 Pa
Temperatur am engsten Dm	$T_{L} = \left(\frac{p_{L}}{p_{1}}\right)^{\frac{\chi-1}{\chi}} \cdot T_{1}$	$=\frac{2\cdot T_1}{\chi+1}$		T _t p _L	Laval-Temp Laval-Druck	K bar
Geschw, am engsten Dm bei A _{min}	$c_{L} = \sqrt{\frac{2 \cdot \chi}{\chi + 1} \cdot p_{1}} \cdot c_{L} = \sqrt{\chi \cdot T_{L} \cdot R} = 0$		а	c _t v _t a R X	Laval-Geschw. Laval-spez Volumen Schallgeschw. spezielle Gaskonst: S.60 S.61	K m³/kg m/s J/kgK
Mach-Zahl: Ma < 1 ⇒ Unterschilbereich Ma = 1 ⇒ Schallbereich Ma > 1 ⇒ Überschallbereich	Ma = C a	$\alpha = \sqrt{x \cdot T}$ $\alpha = \sqrt{x \cdot p}$	_			

	Kreisprozesse bei der Gasturbi	ne
Nutzarbeit	$W_{K} = \sum Q = \sum W_{t} = \sum W_{e}$ rechtsdr.	W _K Nutzarbeit J W _t technische Arbeit J W _e Vorumenanderungsarbeit J Q Wärme J
Carnot-Faktor = Ericsson η immer < 1 nie negativ	$\eta_{car} = 1 - \frac{T_{min}}{T_{max}} = \frac{ W_{car} }{Q_{zu}}$	$\begin{array}{ccc} \eta_{\text{car}} & \text{Carnot-Faktor} & 1 \\ T_{\text{min}} & \text{min. Temperatur} & K \\ T_{\text{max}} & \text{max. Temperatur} & K \end{array}$
wirkliche Prozeßführung	Joule-Prozeß als Vergleichspro	ozeß der Gasturb.
mit der Masse m) mit der Masse m) mit der Masse m) mit der Masse m) mit der Masse m)	P t ₂ Q ₇₃ T Q ₇₃ Q	P: P'= 2B Winterlaisty P= 2B Souma Bishing WK = 2B Winterwhold WK = 2B Sommewhat P' = in Wh' Somme Walter D som was back to the some what P in WK Wanta
	1-2 Isentrope Verdichtung der Luft im V 2-3 Isobare Wärmezufuhr Q ₂₃ 3-4 Isentrope Ausdehnung der Luft in d 4-1 Isobare Wärmeabfuhr Q ₄₁	
Nutzarbeit Leistuus	$W_{K} = W_{tT} - W_{tV} $ $P = w \cdot W_{K}$	W _K Nutzarbeit J W _{tV} techn; Arbeit Verdichter J W _{tT} techn; Arbeit ∃urbine J
Innerer Arbèit	$W_{iK} = W_{iT} - W_{iV} $ $W_{iK} = W_{tT} \cdot \eta_{iT} - \left \frac{W_{tV}}{\eta_{iV}} \right $	W _{IK} innere Arbeit des Kreispr. J W _{tV} techn. Arbeit Verdichter. J W _{tT} techn. Arbeit Turbine. J W _{IV} innere Arbeit Verdichter. J W _{IT} innere Arbeit Turbine. J η _{IT} innerer Wirkungsgr. Turb. 1 η _{IV} innerer Wirkungsgr. Verd. 1
Wärmezüführ	$Q_{zu} = Q_{23} = m \cdot c_{pm} \Big _{l_2}^{l_3} \cdot (T_3 - T_2) > 0$ $Q_{zu} = \frac{Q_{ab}}{7t_b - 1}$	η _{IV} Hinerer Wirkungsgr. Verd. 1 Q _{zu} Wärme (zugeführt) J T ₃ Max: Prozeßtemperatur K T ₂ Kompressionstemperatur K m Masse kg
farmeabfuhr	$Q_{ab} = Q_{41} = m \cdot c_{pm} \Big _{t_1}^{t_4} \cdot (T_1 - T_4)$ <0	C _{pm} spez Wärmekap S 68 kJ/kgK Q _{ab} Wärme (abgeführt) J T ₁ Anfangsternp (Atmosph) K T ₄ Expansionstemperatur K
innerer Wirkungsgrad	$Q_{ab} = Q_{2u} \left(\gamma_{eu} - 1 \right) \qquad T_4 = T_3 \cdot \frac{T_1}{T_2}$	m Masse kg c _{pm} spez Wärmekap S.68 kJ/kg/k n _i innerer Wirkungsgrad 1
	$\eta_i = \frac{W_{iK}}{W_K}$	W _K Nutzarbeit J W _{IK} innere Arbeit des Kreispr. J
Thermischer Wirkungsgrad des Joule-Prozeßes x = 1,4 für 2-atomige Gase (Luft)	$ \eta_{th} = \frac{W_K}{Q_{zu}} = 1 - \frac{T_1}{T_2} = 1 - \left(\frac{p_1}{p_2}\right)^{\frac{\chi-1}{\chi}} = \frac{W_K}{\varphi_{zu}} $	η_{th} therm Wirkungsgrad 1 W _k Nutzarbeit J Q _{zu} Wärme (zugführt) J T ₁ Anfangstemperatur K
χ = 1,3 für 3-atomige Gase χ = 1.667 für 1-atomige Gase	$\eta_{th} = \frac{Q_{zu} + Q_{ab}}{Q_{zu}} = 1 + \frac{Q_{ab} - Q_{bb}}{Q_{zu}} Q_{ab} Q_{ab} Q_{ab} Q_{bb}$ $\eta_{th} = \frac{Q_{xx} + Q_{ab}}{Q_{xy}} - 1 + \frac{Q_{xx} - Q_{xy}}{Q_{xy}} Q_{ab} Q_{ab} Q_{xy}$	$ \begin{array}{c cccc} T_2 & \text{Kompressionstemperatur} & K \\ p_1 & \text{Anfangsdruck (Atmosph)} & \text{bar} \\ p_2 & \text{Kompressionsdruck} & \text{bar} \\ \chi & \text{Verhaltnis } c_p / c_v & 1 \\ \end{array} $
Verbrennungswirkungsgrad	$\begin{split} \eta_{v} &= \frac{Q_{zu}}{Q_{B}} & ; \qquad Q_{B} = m_{B} \cdot H_{u} \\ Q_{B} &= m_{B} \cdot H_{u} = \frac{P_{theo}}{\eta_{th}} \end{split}$	$\begin{array}{cccc} \eta_V & \text{Verbrennungswirkungsgr} & 1 \\ Q_{zu} & \text{zugeführte Wärme} & J \\ Q_B & \text{Verbrennungswärme} & J \\ H_B & \text{Heitzwert} & J/kg \\ m_B & \text{Brennstoffmasse} & kg \\ \end{array}$

	Drosselung.		
Drosselung des Idealgases : T=const	$H_1 = H_2 = const$		
Entropleänderung.	$S_2 - S_1 = m \cdot R \cdot ln \left(\frac{p_1}{p_2}\right)$		
Drosselung des Realgases T₁≠T₂	$H_1 = H_2 = const$		
	$U_{1} - U_{2} = p_{b} \cdot (V_{2} - V_{1})$ $U_{1} - U_{2} = p_{b} \cdot (V_{2} - V_{1})$	Рь	P.Z. baw. Auperduck
	$u_1 - u_2 = c_{vm} \cdot (T_1 - T_2)$		
	$v = \frac{R \cdot T}{p}$	·	
	Der Dampf		
Dampigehalt	$X = \frac{m_D}{m_D + m_W} = \frac{m_D}{m_{ges}}$ $m_D \text{ und } m_W \text{ siehe Massenbilanz nächste Seite}$	w™ wo	Dampfgehält des Naßdampfes Messe an Dampf (Sa41 -) Masse an Wasser
derdampfungswärme	$r = h'' - h'$ $r = (u'' - u') + p \cdot (v'' - v')$	ι h' h' 'υ 'υ 'ν 'ν '-	Verdampfungswarme E 5.44 Enthalpie siedende FI, T 5.4 Enthalpie Sattdampf T 5.4 innere Energie sied Flüssigkeit innere Energie Sattdampf spez, Vol. sied Flüssigkeit T5.4 spez, Vol. Sattdampf T 5.4
spez: Volumen Naßdampf	$V_{x} = V' \div X \cdot (V'' - V')$	ν _x ν' ν''	Druck spez. Vol. Naßdampf spez. Vol. sied Fjüssigkeit T5,4 spez. Vol. Saildampf T,5,4 Dampfgehalt des Naßdampfs
spez Enthalpie des. Naßdampfs	$h_{x} = h' + x \cdot (h'' - h')$ $h_{x} = u + p \cdot v$ $h_{x} = h' + x \cdot r$	h _x h' x p v u r	spezi Enthalpie Nalsdampt spezi Enthalpie sied Ft: T5.4 spezi Enthalpie Sattdampt T5.4 Damptgehält des Naßdampfs Druck spezi Volumen spezi innere Energie Verdampfüngswärme
spez: Entropie des Naßdampfs:	$s_{x} = s' + x \cdot (s'' - s')$	5 _x 5' 5"	spez: Entropie Naßdampf spez: Entropie sied.EJ: T5.4 spez: Entropie Sattdampf T5.4 Dampfgehalt des Naßdampis
spez: Innere:Energie des Naßdampfs:	$u_{x} = u' + x \cdot (u' - u')$ $u_{x} = h' + x \cdot (h' - h') - p \cdot \underbrace{\left[v' + x \cdot \left(v'' - v'\right)\right]}_{v}$ $u_{x} = h - p \cdot v$	ບ _x ບ' x p	spez in Energie Naßdampf spez in Energie sied FI 15.4 spez in Energie Sattdampf15.4 Dämpfgehall des Naßdampfs Druck
Wärmeleistung:	Q = m·q	Q·fi q	Wärmeleistung Massenstrom spez. Wänne auf Masse bez
Volumenstrom	$\dot{V} = \dot{m} \cdot v$; $\dot{V} = A \cdot \bar{c}$	V m v	Volümenstrom
spez. Volumen	A- 4-1	A C V	1
	$V = \frac{1}{m}$ \Rightarrow $V = m \cdot v$	V	Ţ.

Enthlapie Wasser	$h_W = c_W \cdot t_W$ $c_W = 4.2 \frac{\omega}{2.5}$	h _w	Enthalple Wasser	kJ/
	hw ist drudeunabhängig!	C _W	spez: Wärmekap, Wassei Temperatur Wasser	kJ#. •
Massenbilánz	$m_{\text{ges}} = m_{\text{D}} + m_{\text{W}}$		Gesanimasse	 K(
	ges 'T'D' T''V	m_D	Masse Dampi	ks
		ω ^{νλ}	Masse Wasser	k:
Masse des Dampfanteils	$m_D = \frac{V_D}{V_D}$; $m_D = x \cdot m_{ges}$	m₀	Masse des Dampfanteils	k
(Saltdampf)	$III_D = \frac{1}{V_{II}} III_D = \frac{1}{V_{III}} $	V _□	Volumen des Dampianteils	m
N. State of the st		m _w	spezi Vol. Sattdampf, T.5.4 Masse des Siedewasseranteils	m ³ /
Masse des Siedewasserant,	$m_{\rm M} = \frac{\Lambda_{\rm i}}{\Lambda_{\rm i}}$; $m_{\rm M} = m^{200} - m^{\rm D}$	Vw	Volumen des Siedewasserant	k) m
	A, , , , , , , , , , , , , , , , , , ,	V	spez: Vol. Siedewasser J. 5.4	m ² /
Enthalpiebilanz.	$p_{1,1}(\mathbf{w}^D + \mathbf{w}^M) = \dot{\mathbf{w}}^D \cdot \mathbf{p}^D + \mathbf{w}^M \cdot \mathbf{p}^M$	m _{oes}		k
	H. And LIM (- ind and LIM LIM	m₀	- Confederation (1995) N. Confederation (1995) Physical Confederation (1997) (1997)	k
p=const ···		mw		k
F=601131	$ m_W \cdot (h_W - h'')$	h"	Entheipie Endzüstand Sattampf	∦ kJ/
	$m_D = \frac{m_W \cdot (h_W - h'')}{(h'' - h_D)}$	hp	Enthalpie Dampi	kJ)
<u> </u>	· · · · · · · · · · · · · · · · · · ·	h™		kJ,
Uberhitzer bekommt vom	$\dot{Q}_{0b} = \dot{m}_D \cdot (h_x - h'')$	Q _{Ŭb}	The state of the s	k
Kesssel Sattdampf und muß		m _D	Massenstrom Sattdampf Enthalpie Endzüstand bei	kg kJ
dann daraus überhitzter		,,,	Temp. X	No.
Jampi machen: P - const.		h"·		kJ,
Kessel bekommt Siede-	$\dot{Q}_{Ke} = \dot{m}_D \cdot (h'' - h')$	Q _{Ke}		k
wasservon der Speise-	Ke - IID (II - II)	m _D	Massenstrom Siedewasser	i kg
pumpe; daraus wird Satt-		h'	Enthalpie Siedewasser	kJ.
dampi für den Überhitzer		h"	Enthälpie Sattdampi	kJ.
gemacht. P= comat.		1		1
Abdampí nach Dampíturbine		ļ		1
S=const.				្ស
		1		1
Dampiskom -	m _D [kg/h]			1
vollständige Kondensation	d.h. nur noch Siedewasser			
	vorhanden			
Erischdampfdaten sind:	Druck und Temperatur	1		
Dampfzustand ist: ***	Druck und Temperatur	1		1-
Kondensalmenge:		1		
1	m _w [kg/h]			1

p. V-Diagramm gemischte	r Prozeß T, s-Diagram	nm gemischter Prozeß
3 0 4 0 isentrop	5 Q ₅₁	2 W 5 5 1
Verdichterverhältnis ε = -	$V_1 = V_5$, $V_2 = V_3$, $p_3 = p_4$ $\frac{V_1}{V_2}$: $\epsilon^{\chi-1} = \left(\frac{V_1}{V_2}\right)^{\chi-1} = \frac{T_2}{T_2}$	ε Verdichterverhältnis 1 χ Verhältnis c _e /c _e (1.4 Luft) 1
	V_2 V_2 V_1	V ₁ Volumen vor Verdichten m V ₂ Volumen beim Verdichten m T ₁ Anfangstemperatur H T ₂ Temp nach Verdichten H
Einspritzverhältins } ψ =	$\frac{V_4}{V_3} = \frac{T_4}{T_3}$	 ψ Einspritzverhältnis V₃ Volumen beim Verdichten V₄ Volumen beim Verdichten T₄ Temp, beim Verdichten T₃ Temp, beim Verdichten
Druckverhälnis ξ = 1	$\frac{D_3}{D_2} = \frac{T_3}{T_2}$	ξ Druckverhältnis P ₂ P ₃ T ₂ T ₃
Q _{zu} :	$= \mathbf{m} \cdot \mathbf{c}_{v} \cdot \mathbf{T}_{1} \cdot \mathbf{\epsilon}^{\chi-1} \cdot \left[(\xi - 1) + \chi \cdot (\psi - 1) \cdot \xi \right]$ $= \mathbf{Q}_{23} + \mathbf{Q}_{34}$ $= \mathbf{m} \cdot \mathbf{c}_{v} \cdot (\mathbf{T}_{3} - \mathbf{T}_{2}) + \mathbf{m} \cdot \chi \cdot \mathbf{c}_{v} \cdot (\mathbf{T}_{4} - \mathbf{T}_{3})$	c _v spez Wärmekap TB S.60 ψ Einspritzverhältnis ξ Druckverhältnis
64.4.3	$= \mathbf{m}_{B} \cdot \mathbf{H}_{U}$ $= \dot{\mathbf{m}}_{B} \cdot \mathbf{H}_{U} = \dot{\mathbf{Q}}_{B}$	E Verdichterverhältnis m _B Masse Brennstoff kg H _u Heizwert kJ/ P _{zu} zugeführte Leisung V m m m m m m m m m m m m m
	$= m \cdot c_{v} \cdot T_{1} \cdot (\psi^{x} \cdot \xi - 1)$	χ Verhaltnis c _p /c _v (1.4 Luft) 1 Q _{ab} abgeführte Wärme m Masse k c _v spez Wärmekap TB S 60
	$= Q_{51}$ $= m \cdot c_{vm} \cdot \underbrace{(T_1 - T_5)}_{\Delta t}$	ψ Einspritzverhältnis ξ Druckverhältnis χ Verhältnis c _p /c _v (1.4 Luft)
	$=1-\frac{1}{\varepsilon^{x-1}}\cdot\frac{\psi^{x}\cdot\xi-1}{\left[(\xi-1)+\chi\cdot(\psi-1)\cdot\xi\right]}$	
oei Otto - Prozeß bei ψ≒1 η _{th} =	$= 1 - \frac{1}{\varepsilon^{x-1}}$ $= 1 - \frac{1}{\varepsilon^{x-1}} \cdot \frac{\psi^x - 1}{\chi \cdot (\psi - 1)}$	
zeß bei ξ=1. Masse m=		m Masse kg V Volumen m ρ Dichte kg/

mechanischer Wirkungsgrad	$\eta_{m} = \frac{W_{eK}}{W_{iK}}$	∏ _m W _{eK} W _{iK}	mech: Wirkungsgrad Kupplungsarbeit innere Arbeit des Kreispr	1 J
elektrischer Wirkungsgrad	$\eta_{\text{el.}} = \frac{W_{\text{el}}}{W_{\text{eK}}}$	$\eta_{ef} \ W_{ef} \ W_{eK}$	elektr. Wirkungsgråd elektr. Arbeit Kupplungsarbeit	1 ل ن
Eigenbedarfswirkungsgrad	$\eta_{\text{eig.}} = rac{W_{\text{el}} - W_{\text{eig}}}{W_{\text{el}}} = rac{W}{W_{\text{el}}}$	$\eta_{eig} \ W_{el} \ W_{eig}$	eigenbed Wirkungsgrad elektr. Arbeit eigenbed. Arbeit	1 J
Gesamtwirkungsgrad	$\eta = \frac{W}{Q_B} = \eta_V \cdot \eta_th \cdot \eta_i \cdot \eta_m \cdot \eta_el \cdot \eta_eig$			
Effektiver Wirkungsgrad	$\eta_{\text{eff}} = \frac{W}{Q_{\text{B}}} = \frac{P}{\dot{Q}_{\text{B}}} = \eta_{\text{i}} \cdot \eta_{\text{m}} \cdot \eta_{\text{el}}$			
Druckverhältnis	Druckverhältnis = $\frac{p_2}{p_1}$	p ₁ p ₂	Anfangsdruck (Atmosph) Kompessionsdruck	bar bar
Volumenstrom	$\dot{V} = \frac{\dot{m}_B}{\rho}$ umrechnen auf Lie/Sid.	V° m° _Β	Volumenstrom Brennmassenstrom Dichte	m³/s kg/s kg/m³
Stromkosten	$K_{Str.} = \frac{\dot{V}}{P} \cdot G$	K _{Str.} P V° G	Stromkosten Leistung (effektiv) Volumenstrom Preis pro m³ oder Liter	DM/M DM/m DM/m
Verbrennungszeit	$\tau = \frac{Q_B}{P}$ umrechnen auf Std. (mal 3600)	τ P Q _B	Verbrennungszeit Leistung Verbrennungswärme	s kJ kW

	Kreisprozeß der Dampfmasc	hine		
Zugeführte Brennstoffleistung	$\dot{Q}_{B} = \dot{m}_{B} \cdot H_{U}$	ṁ _в	Brennstoffmassenstrom	kg/s
kW	Q _B − III _B · I I _u	Hu	Heizwert	kJ/ kg
Effektiver Wirkungsgrad	, P _{KI} , , , , , ,	P _{KL}	Klemmleistung am Netz	kW
	$\mathbf{h}_{\text{eff}} = \frac{P_{\text{KL}}}{\dot{\mathbf{Q}}_{\text{B}}} = \mathbf{h}_{\text{K}} \cdot \mathbf{h}_{\text{R}} \cdot \mathbf{h}_{\text{th}} \cdot \mathbf{h}_{\text{i}} \cdot \mathbf{h}_{\text{m}} \cdot \mathbf{h}_{\text{el}} \cdot \mathbf{h}_{\text{eig}}$	\dot{Q}_{B}	Zugeführte Brennstoffleistung	kW
Kesselwirkungsgrad	einfache Prozeßführung	ṁ _D	Dampfmassenstrom	kg/s
		h _K	spez. Enthalpie des Dampfes am	kJ/kg
	$h_{K} = \frac{\dot{m}_{D} \cdot (h_{K} - h_{W})}{\dot{O}}$		Dampferzeugeraustritt spez. Enthalpie des Wassers am	
	$\dot{Q}_{\rm B}$	h _w	Dampferzeugereintritt (≙ h')	kJ/kg
	zweifache Prozeßführung (mit Zwischenüberhitzer)	h_3	spez. Enthalpie des Dampfes am Zwischenüberhitzeraustritt	kJ/kg
		h ₂	spez. Enthalpie des Dampfes am	kJ/kg
	$\mathbf{h}_{K} = \frac{\dot{\mathbf{m}}_{D} \cdot \left[\left(\mathbf{h}_{K} - \mathbf{h}_{W} \right) + \left(\mathbf{h}_{3} - \mathbf{h}_{2}' \right) \right]}{\dot{\mathbf{Q}}_{D}}$	_	Zwischenüberhitzereintritt (wirklich)	
	$\dot{\mathbf{Q}}_{B}$	\dot{Q}_{B}	Zugeführte Brennstoffleistung	kW
Rohrleitungswirkungsgrad		h _K	spez. Enthalpie des Dampfes am	kJ/ kg
	$h_1 - h_W$		Dampferzeugeraustritt spez. Enthalpie des Wassers am	
	$h_{R} = \frac{n_{1} - n_{W}}{h_{H} - h_{W}}$	h _w	Dampferzeugereintritt (≜h')	kJ/kg
	''K ''W	h ₁	spez. Enthalpie des Dampfes am HD-Turbineneingang	kJ/kg
Thermischer Wirkungsgrad	einfache Prozeßführung	h₁	spez. Enthalpie des Dampfes am	k.l/
			HD-Turbineneingang	kJ/kg
	$h_{th} = \frac{h_1 - h_2}{h_1 - h_W} = \frac{W_K}{q_{zu}}$	h ₂	spez. Enthalpie des Dampfes am HD-Turbinenausgang (isentrop)	kJ/ kg
	$h_1 - h_W q_{zu}$	h _w	spez. Enthalpie des Wassers am	kJ/kg
	zweifache Prozeßführung (mit Zwischenüberhitzer)		Dampferzeugereintritt (≙h') spez. Enthalpie des Dampfes am	
	h. – h. + h. – h. w	h ₃	Zwischenüberhitzeraustritt	kJ/ kg
	$h_{th} = \frac{h_1 - h_2 + h_3 - h_4}{h_4 - h_W + h_2 - h_2} = \frac{W_K}{Q_{tH}}$	h_4	spez. Enthalpie des Dampfes am	kJ/kg
	$n_1 - n_W + n_3 - n_2 \qquad q_{zu}$		ND-Turbinenausgang (isentrop)	
Innerer Wirkungsgrad im		h₁	spez. Enthalpie des Dampfes am	kJ/ kg
Hochdruck-Teil bzw. bei	$h_{iHD} = \frac{h_1 - h_2'}{h_1 - h_2}$ (=?i bei einfachem Prozeß)		HD-Turbineneingang spez. Enthalpie des Dampfes am	
einfacher Prozeßführung	$\mathbf{n}_{iHD} = \frac{\mathbf{n}_{iHD}}{\mathbf{n}_{iHD}} = \frac{\mathbf{n}_{iHD}}{\mathbf{n}_{iHD}}$ (=?i bei einfachem Prozeß)	h ₂	HD-Turbinenausgang (isentrop)	kJ/kg
	11 12	h ₂	spez. Enthalpie des Dampfes am HD-Turbinenausgang (wirklich)	kJ/ kg
Innerer Wirkungsgrad im	L L'	h ₃	spez. Enthalpie des Dampfes am Zwischenüberhitzeraustritt	kJ/kg
Niederdruck-Teil	$h_{\text{iND}} = \frac{h_3 - h_4}{h_2 - h_4}$	h₄	spez. Enthalpie des Dampfes am	kJ/kg
	$h_3 - h_4$		ND-Turbinenausgang (isentrop) spez. Enthalpie des Dampfes am	
0		h ₄	ND-Turbinenausgang (wirklich)	kJ/kg
Gesamter innerer Wirkungsgrad bei zweifacher	$h_1 - h_1 - h_2' + h_3 - h_4' - W_{ik} \sim h_{iHD} + h_{iND}$	\mathbf{w}_{ik}	spez. innere Arbeit	kJ/ kg
Prozeßführung	$h_{i} = \frac{h_{1} - h_{2}' + h_{3} - h_{4}'}{h_{1} - h_{2} + h_{3} - h_{4}} = \frac{w_{ik}}{w_{K}} \approx \frac{h_{iHD} + h_{iND}}{2}$	w _K	spez. Nutzarbeit	kJ/kg
Mechanischer Wirkungsgrad	_	W _{ek}	spez. Kupplungsarbeit	kJ/ kg
	$\frac{1}{h} - \frac{W_{ek}}{h} - \frac{P_e}{h}$	\mathbf{w}_{ik}	spez. innere Arbeit	kJ/ kg
	$h_{\rm m} = \frac{W_{\rm ek}}{W_{\rm ik}} = \frac{P_{\rm e}}{P_{\rm i}}$	P _e	Kupplungsleistung	kW
	IK I	P_{i}	Innere Leistung	kW
Elektrischer Wirkungsgrad	D	w _{el}	spez. el. Arbeit des Generator	kJ/ kg
	$h_{\rm el} = \frac{W_{\rm el}}{W_{\rm ek}} = \frac{P_{\rm el}}{P_{\rm e}}$	W _{ek}	spez. Kupplungsarbeit	kJ/ kg
	W_{ek} P_{e}	Pel	Generatorleistung	kW
Figure 1 and		P _e	Kupplungsleistung	kW
Eigenbedarfswirkungsgrad		W _{KL}	spez. abgeg. el. Arbeit	kJ/kg
	$\mathbf{h} = \mathbf{W}_{KL} = \mathbf{W}_{el} - \mathbf{W}_{eig} = \mathbf{P}_{KL}$	W _{el}	spez. el. Arbeit des Generator	kJ/ kg
	$h_{\text{eig}} = \frac{w_{\text{KL}}}{w_{\text{el}}} = \frac{w_{\text{el}} - w_{\text{eig}}}{w_{\text{el}}} = \frac{P_{\text{KL}}}{P_{\text{el}}}$	W _{eig}	spez. Arbeit als Eigenbedarf	kJ/kg
	ei ei ei	P _{KL}	Klemmleistung am Netz	kW
Technische Arbeit im			Generatorleistung spez. Enthalpie des Dampfes am	kW
Hochdruck-Teil	$W_{1HD} = h_1 - h_2$ (=w _k bei einfachem Prozeß)	h ₁	HD-Turbineneingang	kJ/kg
kJ/ _{kg}	THD 11 12 (-WK Del emiadriem F102eis)	h ₂	spez. Enthalpie des Dampfes am HD-Turbinenausgang (isentrop)	kJ/kg
Technische Arbeit im	w	h ₃	spez. Enthalpie des Dampfes am Zwischenüberhitzeraustritt	kJ/ kg
Niederdruck-Teil	$\mathbf{w}_{tND} = \mathbf{h}_3 - \mathbf{h}_4$	h₄	spez. Enthalpie des Dampfes am	kJ/kg
		+	ND-Turbinenausgang (isentrop) spez. Enthalpie des Dampfes am	
Spezifische Nutzarbeit bei zweifacher Prozessführung		h ₁	HD-Turbineneingang	kJ/kg
zwenacher Prozessiumrung		h ₂	spez. Enthalpie des Dampfes am	kJ/kg
7 s	$W_{K} = W_{tHD} + W_{tND} = h_{1} - h_{2} + h_{3} - h_{4}$	1	HD-Turbinenausgang (isentrop) spez. Enthalpie des Dampfes am	
		h ₃		kJ/kg
			Zwischenüberhitzeraustritt spez. Enthalpie des Dampfes am	

Innere Leistung		ṁ _р	Dampfmassenstrom	kg/s
kW	einfache Prozeßführung	h,	spez. Enthalpie des Dampfes am	kJ/kg
	$P_i = \dot{m}_D \cdot (h_1 - h_2') = \dot{m}_D \cdot w_{ik}$	'	HD-Turbineneingang spez. Enthalpie des Dampfes am	
		h ₂	HD-Turbinenausgang (wirklich)	kJ/kg
	zweifache Prozeßführung (mit Zwischenüberhitzer)	h ₃	spez. Enthalpie des Dampfes am Zwischenüberhitzeraustritt	kJ/kg
	$P_i = \dot{m}_D \cdot (h_1 - h_2' + h_3 - h_4') = \dot{m}_D \cdot w_{ik}$	h ₄	spez. Enthalpie des Dampfes am	kJ/kg
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	W _{ik}	ND-Turbinenausgang (wirklich) spez. innere Arbeit	
Theoretische Leistung		m _D	Dampfmassenstrom	kJ/kg kg/s
kW	einfache Prozeßführung	h₁	spez. Enthalpie des Dampfes am	/s kJ/ kg
	$P_{\text{theo}} = \dot{m}_{D} \cdot (h_1 - h_2) = \dot{m}_{D} \cdot w_{K}$	'	HD-Turbineneingang	
	uleo D (1 2) D K	h ₂	spez. Enthalpie des Dampfes am HD-Turbinenausgang (wirklich)	kJ/kg
	zweifache Prozeßführung (mit Zwischenüberhitzer)	h ₃	spez. Enthalpie des Dampfes am Zwischenüberhitzeraustritt	kJ/kg
	$P_{\text{theo}} = \dot{m}_D \cdot (h_1 - h_2 + h_3 - h_4) = \dot{m}_D \cdot w_K$	h ₄	spez. Enthalpie des Dampfes am	kJ/kg
	theo $-\Pi_D \cdot (\Pi_1 - \Pi_2 + \Pi_3 - \Pi_4) - \Pi_D \cdot W_K$		ND-Turbinenausgang (wirklich)	
Laiatuna l'Ibarbitzar i Kasaal		W _K	spez. Nutzarbeit	kJ/kg kg/
Leistung Überhitzer+Kessel kW		m _□	Dampfmassenstrom spez. Enthalpie des Dampfes am	, ,
NVV	$ \dot{Q}_{\ddot{U}b} = \dot{m}_D \cdot (h_1 - h_w) > 0$	h ₁	HD-Turbineneingang	kJ/kg
		h_{w}	spez. Enthalpie des Wassers am Dampferzeugereintritt (≙ h')	kJ/kg
Leistung Zwischenüberhitzer		Μ̈ _D	Dampfmassenstrom	kg/s
kW	$\dot{Q}_{z\ddot{i}} = \dot{m}_{D} \cdot (h_{3} - h_{2}') > 0$	h ₃	spez. Enthalpie des Dampfes am	kJ/kg
	$ \mathbf{x}_{Z\ddot{\mathbf{U}}} - \mathbf{H}_{\mathbf{D}} \cdot (\mathbf{H}_{3} - \mathbf{H}_{2}) > 0$		Zwischenüberhitzeraustritt spez. Enthalpie des Dampfes am	
		h ₂	HD-Turbinenausgang (wirklich)	kJ/kg
Leistung Kondensator		ṁ _D	Dampfmassenstrom	kg/s
kW	$\dot{Q}_{K_0} = \dot{m}_D \cdot (h_w - h_4') < 0$	h_{W}	spez. Enthalpie des Wassers am Dampferzeugereintritt (≙ h')	kJ/kg
	NO B (W 4)	h ₄	spez. Enthalpie des Dampfes am	kJ/kg
Klemmleistung		P _i	ND-Turbinenausgang (wirklich) Innere Leistung	kW
kW	Nur bei einfacher Prozessführung	$h_{\rm m}$	Mechanischer Wirkungsgrad	KVV
	$ P_{KL} = P_{theo} \cdot h_i \cdot h_m \cdot h_{el} \cdot h_{eig} \approx P_{theo} \cdot h_{eff}$	$h_{\rm el}$	Elektrischer Wirkungsgrad	
	1	$oldsymbol{h}_{ ext{eig}}$	Eigenbedarfswirkungsgrad	
Spezifischer Dampfverbrauch	m	ṁ _D	Dampfmassenstrom	kg/s
	$d = \frac{m_D}{P_{KI}}$	P _{KL}	Klemmleistung am Netz	1.347
	' KL	' KL		kW
Speisewasservorwärmung		a	Dampfmassenstromanteil der Abgezweigt wird	
A 11.6	Erste Abzweigstelle	(1-a)	Verbleibender	
	$a \cdot (h_2 - h_{10}) = (1 - a) \cdot (h_{10} - h_9)$	h	Dampfmassenstromanteil spez. Enthalpie des Dampfes an der Abzweigstelle	kJ/
2 4000- 05		h ₂		kg
	Zweite Abzweigstelle	h ₁₀	spez. Enthalpie des Wassers nach dem zumischen	kJ/kg
954 P.7	$b \cdot (h_3 - h_9) = (1 - a - b) \cdot (h_9 - h_8)$	h_9	spez. Enthalpie des Wassers vor dem zumischen	kJ/kg
الحال الحال			dem zamisenem	
Einfache Prozeßführung	h h L T.	1	k	
G	\(\big ^{\text{K}}\)		<u>/</u> 1	
			K //	
	2'			
	2			
		w	2	
	w		2	
				
Zweifache Prozeßführung	s		<u> </u>	
Zwellache i Tozeisiumung	h h ,k			
	$\sqrt{1}$			
	4			
	2 2 4			
	w.			
	s			

	Feuchte Luft			
Relative Feuchte	$p_{\rm D} r_{\rm D}$	p_D	Partialdruck Wasserdampf	Pa
1		p_s	Sättigungsdruck T6.1	Pa
	$\rho_{\rm s}$ $r_{\rm s}$	$r_{\scriptscriptstyle D}$	Dichte Wasserdampf	kg/ m³
		$oldsymbol{r}_{ extsf{s}}$	Sättigungsdichte T6.1	kg/ m³
Gesamtdruck	$p = p_L + p_D$ $1Pa = 1\frac{N}{m^2}$ $1bar = 10^5 Pa$	p_L	Partialdruck trockene Luft	Pa
Pa	P PL PD Fa = 17/m² Ibai = 10 Ta	p_D	Partialdruck Wasserdampf	Pa
Massenstrom feuchte Luft	$\dot{\mathbf{m}}_{f} = \dot{\mathbf{m}}_{l} + \dot{\mathbf{m}}_{D}$	ṁ _∟	Massenstrom trockene Luft	kg/s
kg/ /s		ṁ _D	Massenstrom Wasserdampf	kg/s
	$\dot{\mathbf{m}}_{f} = \dot{V}_{f} \cdot \mathbf{r}_{f}$	\dot{V}_{f}	Volumenstrom feuchte Luft	m ³ /s
	$\dot{m}_{f} = \dot{m}_{L} (1+x)$	$r_{\scriptscriptstyle f}$	Dichte feuchte Luft	kg/m³
		x	Feuchtegrad	kg/ kg
Massenstrom trockene Luft	$\dot{\mathbf{m}}$. $(\mathbf{p} - \mathbf{i} \cdot \mathbf{p}) \cdot \dot{\mathbf{V}}$	ṁ _f	Massenstrom feuchte Luft	kg/s
kg/ /s	$\dot{\mathbf{m}}_{L} = \frac{\dot{\mathbf{m}}_{f}}{1+\mathbf{x}}$ $\dot{\mathbf{m}}_{L} = \frac{(\mathbf{p}_{0} - \mathbf{j} \cdot \mathbf{p}_{s}) \cdot \dot{\mathbf{V}}}{\mathbf{R}_{I} \cdot \mathbf{T}}$	p _o	Atmosphärendruck (1,01325bar)	Pa
	$ 1+x - R_{L} \cdot T$	j	Relative Feuchte	1
	D 007 J	p_s	Sättigungsdruck T6.1	Pa
	$R_L = 287 \frac{J}{kg \cdot K}$	V _f	Volumenstrom feuchte Luft	m ³ /s
Feuchtegrad		R _i	spez. Gaskonstante tr. Luft	J/kg-K
kg/ /kg	$x = 0.622 \cdot \frac{J \cdot p_s}{J \cdot p_s} = \frac{m_D}{m_D}$	T	Temperatur (0°=273K)	K
/kg	$x = 0.622 \cdot \frac{\mathbf{j} \cdot \mathbf{p}_{s}}{\mathbf{p} - \mathbf{j} \cdot \mathbf{p}_{s}} = \frac{\dot{\mathbf{m}}_{D}}{\dot{\mathbf{m}}_{L}}$	m _D	Massenstrom Wasserdampf	kg/s
Verdunstete Wassermenge		m,	Massenstrom trockene Luft	kg/s
kg/ s	$\Delta \dot{m}_{w} = \dot{m}_{L} \cdot \Delta x$	-	Feuchtegraddifferenz	/s kg/ kg
Befeuchtung mit Dampf		Δx	Enthalpie Sattdampf bzw.	
beleachtung mit Dampi	Δh	h _D	Frischdampf TB5.4 bzw. T5.5	kJ/ kg
	$h_{\rm D} = \frac{\Delta h}{\Delta x}$	Δh	Enthalpiedifferenz	kJ/kg
	ΔΧ	Δx	Feuchtegraddifferenz	kg/ kg
	$\lambda \dot{m} = \dot{m} \lambda v$	$\Delta \dot{m}_D$	Dampfmenge	kg/s
	$\Delta \dot{m}_D = \dot{m}_L \cdot \Delta x$	m,	Massenstrom trockene Luft	kg/s
Spez. Enthalpie	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t	Temperatur	°C
kJ/kg	$h = 1,004 \cdot t + x \cdot (1,86 \cdot t + 2500)$		Feuchtegrad	kg/ kg
Dichte der feuchten Luft		r _{tr}	Dichte trockene Luft	/kg /m³
	$r_{\rm f} = r_{\rm tr} \cdot \left(1 - 0.377 \cdot \frac{\mathbf{j} \cdot p_{\rm s}}{p_{\rm o}} \right)$	-		
kg/m³	$I_f = I_{tr} \cdot \left[1 - 0.377 \cdot \frac{1}{D} \right]$	j	Relative Feuchte	1
	(P ₀)	p _s	Sättigungsdruck T6.1	Pa
	$r_{tr} = \frac{p_0}{R_L \cdot T}$ $R_L = 287 \frac{J}{k\alpha \cdot K}$	p ₀	Atmosphärendruck (1,01325bar)	Pa ½ _{kg·K}
	$I_{tr} = \frac{1}{1}$ $R = 287$	R,	spez. Gaskonstante tr. Luft	
	I " R. ·T '\ ^{L -20} ' ka.K		T	
I lases above a guif au dana	" R _L · T	T	Temperatur (0°=273K)	K
Umrechnung auf andere	L Ng N	j ist	Vorhandene rel. Feuchte	K 1
	L Ng N	$oldsymbol{j}_{ ext{ist}}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm	1 1
	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$	j ist j Dia p _{ist}	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck	K 1 1 bar
Drücke	L Ng N	j ist j Dia pist p _{Dia}	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar)	K 1 1 bar bar
Drücke Wärmeleistung	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$	j ist j Dia p ist p Dia	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung	K 1 1 bar bar kW
Drücke	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$	j ist j Dia pist pDia	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft	K 1 1 bar bar kW
Drücke Wärmeleistung kW	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz	K 1 1 bar bar kW kg/s kJ/kg
Drücke Wärmeleistung kW Kälteleistung	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung	K 1 1 bar bar kW kg/s ky/kg kW
Drücke Wärmeleistung kW	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k1/kg kW kg/s
Drücke Wärmeleistung kW Kälteleistung kW	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta \mathbf{h} > 0 \qquad \qquad kW = \frac{kJ}{s}$	$egin{aligned} \dot{m{J}}_{\mathrm{ist}} \\ \dot{m{J}}_{\mathrm{Dia}} \\ \mathbf{p}_{\mathrm{pia}} \\ \mathbf{p}_{\mathrm{Dia}} \\ \mathbf{p}_{\mathrm{H}} \\ \dot{\mathbf{m}}_{\mathrm{L}} \\ \Delta \mathbf{h} \\ \mathbf{P}_{\mathrm{K}} \\ \dot{\mathbf{m}}_{\mathrm{L}} \\ \Delta \mathbf{h} \end{aligned}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz	K 1 1 bar bar kW kg/s ks/kg kW kg/s ks/kg
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$	j_{ist} j_{Dia} p_{ist} p_{Dia} p_{H} m_{L} Δh p_{K} m_{L}	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1.01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k-/kg kW kg/s k-/kg kg/s
Drücke Wärmeleistung kW Kälteleistung kW	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$	$\begin{array}{c} \boldsymbol{\dot{j}}_{ist} \\ \boldsymbol{\dot{j}}_{Dia} \\ \boldsymbol{p}_{pist} \\ \boldsymbol{p}_{Dia} \\ \boldsymbol{P}_{H} \\ \dot{\boldsymbol{m}}_{L} \\ \underline{\Delta}\boldsymbol{h} \\ \boldsymbol{P}_{K} \\ \dot{\boldsymbol{m}}_{L} \\ \underline{\Delta}\boldsymbol{h} \\ \dot{\boldsymbol{m}}_{L} \\ \boldsymbol{\dot{m}}_{L} \\ \boldsymbol{\dot{m}}_{L} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz	K 1 1 bar bar kW kg/s k1/kg kW/kg kg/s k3/s k3/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = \mathbf{P}_{K} = \dot{\mathbf{m}}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$	j_{ist} j_{Dia} p_{ist} p_{Dia} p_{H} m_{L} Δh p_{K} m_{L}	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1.01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft	K 1 1 bar bar kW kg/s kJ/kg kW kg/s kJ/kg kg/s kg/s kg/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{l} \boldsymbol{\dot{j}}_{ist} \\ \boldsymbol{\dot{j}}_{Dia} \\ \boldsymbol{p}_{pist} \\ \boldsymbol{p}_{Dia} \\ \boldsymbol{P}_{H} \\ \dot{\boldsymbol{m}}_{L} \\ \underline{\Delta h} \\ \boldsymbol{P}_{K} \\ \dot{\boldsymbol{m}}_{L} \\ \underline{\Delta h} \\ \dot{\boldsymbol{m}}_{L} \\ \dot{\boldsymbol{m}}_{L} \\ \boldsymbol{\dot{m}}_{L} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft	K 1 1 bar bar kW kg/s k1/kg kW/kg kg/s k3/s k3/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{c} \boldsymbol{\dot{j}}_{\mathrm{ist}} \\ \boldsymbol{\dot{j}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft	K 1 1 bar bar kW kg/s kJ/kg kW kg/s kJ/kg kg/s kg/s kg/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{c} \dot{\boldsymbol{J}}_{\mathrm{ist}} \\ \dot{\boldsymbol{J}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \underline{\Delta}\boldsymbol{h} \\ \boldsymbol{P}_{\mathrm{K}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \underline{\Delta}\boldsymbol{h} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \\ \dot{\boldsymbol{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung	K 1 1 bar bar kW kg/s k¹/kg kW kg/s k²/kg kg/s k²/kg
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = \mathbf{P}_{K} = \dot{\mathbf{m}}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$	$\begin{array}{c} \boldsymbol{\dot{J}}_{\mathrm{ist}} \\ \boldsymbol{\dot{J}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \boldsymbol{P}_{\mathrm{K}} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \\ \boldsymbol{\dot{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \\ \boldsymbol{h}_{\mathrm{a}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a	K 1 1 bar bar kW kg/s k½/kg kW kg/s k½/kg kg/s k½/kg
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{c} \boldsymbol{\dot{J}}_{\mathrm{ist}} \\ \boldsymbol{\dot{J}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \boldsymbol{P}_{\mathrm{K}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \\ \dot{\boldsymbol{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \\ \boldsymbol{h}_{\mathrm{a}} \\ \boldsymbol{h}_{\mathrm{b}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b	K 1 1 bar bar kW kg/s k½/kg kW kg/s k½/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{c} \boldsymbol{j}_{\text{ist}} \\ \boldsymbol{j}_{\text{Dia}} \\ \boldsymbol{p}_{\text{pist}} \\ \boldsymbol{p}_{\text{Dia}} \\ \boldsymbol{P}_{\text{H}} \\ \dot{\boldsymbol{m}}_{\text{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \boldsymbol{P}_{\text{K}} \\ \dot{\boldsymbol{m}}_{\text{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \dot{\boldsymbol{m}}_{\text{L}} \\ \boldsymbol{\Delta}\boldsymbol{h} \\ \dot{\boldsymbol{m}}_{\text{L}} \\ \boldsymbol{m}_{\text{La}} \\ \dot{\boldsymbol{m}}_{\text{Lb}} \\ \boldsymbol{h}_{\text{m}} \\ \boldsymbol{h}_{\text{a}} \\ \boldsymbol{h}_{\text{b}} \\ \boldsymbol{x}_{\text{m}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Enthalpiedifferenz Massenstrom a trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung	K 1 1 bar bar kW kg/s k/kg kW kg/s kJ/kg kg/s kJ/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = \mathbf{P}_{K} = \dot{\mathbf{m}}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$ $\frac{\mathbf{h}_{m} - \mathbf{h}_{b}}{\mathbf{h}_{a} - \mathbf{h}_{m}} = \frac{\mathbf{x}_{m} - \mathbf{x}_{b}}{\mathbf{x}_{a} - \mathbf{x}_{m}} = \frac{\dot{\mathbf{m}}_{La}}{\dot{\mathbf{m}}_{Lb}}$	$ \begin{aligned} & \stackrel{\textstyle j}{j}_{\text{ist}} \\ & \stackrel{\textstyle j}{j}_{\text{Dia}} \\ & \stackrel{\textstyle p_{\text{pist}}}{p_{\text{Dia}}} \\ & \stackrel{\textstyle p_{\text{H}}}{m_{\text{L}}} \\ & \stackrel{\textstyle \Delta h}{m_{\text{L}}} \\ & \stackrel{\textstyle \Delta h}{m_{\text{L}}} \\ & \stackrel{\textstyle M_{\text{L}a}}{m_{\text{Lb}}} \\ & \stackrel{\textstyle h_{m}}{m_{\text{Lb}}} \\ & \stackrel{\textstyle h_{m}}{h_{\text{a}}} \\ & \stackrel{\textstyle h_{b}}{m_{\text{L}}} \\ & \stackrel{\textstyle X_{m}}{m_{\text{L}}} \\ & \textstyle X$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a	K 1 1 bar bar kW kg/s k1/kg kg/s k1/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = \mathbf{P}_{K} = \dot{\mathbf{m}}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$ $\frac{\mathbf{h}_{m} - \mathbf{h}_{b}}{\mathbf{h}_{a} - \mathbf{h}_{m}} = \frac{\mathbf{x}_{m} - \mathbf{x}_{b}}{\mathbf{x}_{a} - \mathbf{x}_{m}} = \frac{\dot{\mathbf{m}}_{La}}{\dot{\mathbf{m}}_{Lb}}$	$\begin{array}{c} \dot{\boldsymbol{J}}_{\mathrm{ist}} \\ \dot{\boldsymbol{J}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \dot{\boldsymbol{m}}_{\mathrm{L}} \\ \underline{\Delta}\boldsymbol{h} \\ \boldsymbol{h}_{\mathrm{L}} \\ \dot{\boldsymbol{m}}_{\mathrm{La}} \\ \dot{\boldsymbol{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \\ \boldsymbol{h}_{\mathrm{a}} \\ \boldsymbol{h}_{\mathrm{b}} \\ \boldsymbol{x}_{\mathrm{m}} \\ \boldsymbol{x}_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} \\ \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k¹/kg kg/s k²/kg kg/s kg/s kg/s kg/s
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{p_{ist}}{p_{Dia}}$ $\dot{\mathbf{Q}}_{H} = P_{H} = \dot{m}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = P_{K} = \dot{m}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$	$\begin{array}{c} \boldsymbol{\dot{j}}_{\mathrm{ist}} \\ \boldsymbol{\dot{j}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta h} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta h} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \\ \boldsymbol{\dot{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \\ \boldsymbol{h}_{\mathrm{a}} \\ \boldsymbol{h}_{\mathrm{b}} \\ \boldsymbol{x}_{\mathrm{m}} \\ \boldsymbol{x}_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom a trockene Luft	K 1 1 bar bar kW kg/s k½/kg kW kg/s k½/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} &= \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} &= \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} &= \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{q}}_{K} &= \dot{\boldsymbol{q}}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{h}}_{a} - \boldsymbol{h}_{m} &= \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{h}}_{m} &= \frac{\dot{\boldsymbol{m}}_{La} \cdot \boldsymbol{h}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b}}{\dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb}} \end{aligned}$	j j j j p j p j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom trockene Luft Massenstrom b trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft	K 1 1 bar bar kW kg/s k1/kg kg/s k3/s k3/s k3/s k3/s k3/s k3/s k3/s k3
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} &= \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} &= \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} &= \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{q}}_{K} &= \dot{\boldsymbol{q}}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{h}}_{a} - \boldsymbol{h}_{m} &= \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{h}}_{m} &= \frac{\dot{\boldsymbol{m}}_{La} \cdot \boldsymbol{h}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b}}{\dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb}} \end{aligned}$	$\begin{array}{c} \boldsymbol{\dot{j}}_{\mathrm{ist}} \\ \boldsymbol{\dot{j}}_{\mathrm{Dia}} \\ \boldsymbol{p}_{\mathrm{pist}} \\ \boldsymbol{p}_{\mathrm{Dia}} \\ \boldsymbol{P}_{\mathrm{H}} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta h} \\ \boldsymbol{\dot{m}}_{\mathrm{L}} \\ \boldsymbol{\Delta h} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \\ \boldsymbol{\dot{m}}_{\mathrm{Lb}} \\ \boldsymbol{h}_{\mathrm{m}} \\ \boldsymbol{h}_{\mathrm{a}} \\ \boldsymbol{h}_{\mathrm{b}} \\ \boldsymbol{x}_{\mathrm{m}} \\ \boldsymbol{x}_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} \\ \boldsymbol{\dot{m}}_{\mathrm{La}} \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom a trockene Luft	K 1 1 bar bar kW kg/s k½/kg kW kg/s k½/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\mathbf{j}_{ist} = \mathbf{j}_{Dia} \cdot \frac{\mathbf{p}_{ist}}{\mathbf{p}_{Dia}}$ $\dot{\mathbf{Q}}_{H} = \mathbf{P}_{H} = \dot{\mathbf{m}}_{L} \cdot \Delta h > 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{Q}}_{K} = \mathbf{P}_{K} = \dot{\mathbf{m}}_{L} \cdot \Delta h < 0 \qquad kW = \frac{kJ}{s}$ $\dot{\mathbf{m}}_{L} = \dot{\mathbf{m}}_{La} + \dot{\mathbf{m}}_{Lb}$ $\frac{\mathbf{h}_{m} - \mathbf{h}_{b}}{\mathbf{h}_{a} - \mathbf{h}_{m}} = \frac{\mathbf{x}_{m} - \mathbf{x}_{b}}{\mathbf{x}_{a} - \mathbf{x}_{m}} = \frac{\dot{\mathbf{m}}_{La}}{\dot{\mathbf{m}}_{Lb}}$	j j j j p j p j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom trockene Luft Massenstrom b trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft	K 1 1 bar bar kW kg/s k1/kg kg/s k3/s k3/s k3/s k3/s k3/s k3/s k3/s k3
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} = & \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} = & \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} = & \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{A} - & \boldsymbol{h}_{m} = & \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{m}}_{Lb} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{m} - \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} - & \dot{\boldsymbol{h}}_{b} - \boldsymbol{h}_{b} \end{aligned}$	$\begin{array}{c} \hat{\pmb{J}}_{\text{ist}} \\ \hat{\pmb{J}}_{\text{Dia}} \\ p_{\text{pist}} \\ p_{\text{Dia}} \\ P_{\text{H}} \\ \hat{\pmb{m}}_{\text{L}} \\ \Delta h \\ P_{\text{K}} \\ \hat{\pmb{m}}_{\text{L}} \\ \Delta h \\ \hat{\pmb{m}}_{\text{La}} \\ \hat{\pmb{m}}_{\text{La}} \\ \hat{\pmb{m}}_{\text{Lb}} \\ h_{\text{m}} \\ h_{\text{a}} \\ h_{\text{b}} \\ x_{\text{m}} \\ x_{\text{a}} \\ x_{\text{b}} \\ \hat{\pmb{m}}_{\text{L}} \\ \hat{\pmb{m}}_{\text{La}} \\ \hat{\pmb{m}}_{\text{Lb}} \\ h_{\text{h}_{\text{a}}} \\ h_{\text{b}} \\ h_{\text{a}} \\ h_{\text{b}} \\ \end{array}$	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom a trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft	K 1 1 bar bar kW kg/s kl/kg kg/s kl/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Drücke Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} = & \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} = & \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} = & \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{A} - & \boldsymbol{h}_{m} = & \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{m}}_{Lb} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{m} - \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} - & \dot{\boldsymbol{h}}_{b} - \boldsymbol{h}_{b} \end{aligned}$	j j j j j j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom a trockene Luft Massenstrom b trockene Luft Enthalpie des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom b trockene Luft Enthalpie des Massenstrom a Enthalpie des Massenstrom a Enthalpie des Massenstrom b Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k½/kg kW kg/s k½/kg kg/s kg/s kg/s kg/s kg/g kg/g kg/g k
Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} &= \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} &= \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} &= \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{q}}_{K} &= \dot{\boldsymbol{q}}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} &= \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{h}}_{a} - \boldsymbol{h}_{m} &= \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{h}}_{m} &= \frac{\dot{\boldsymbol{m}}_{La} \cdot \boldsymbol{h}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b}}{\dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb}} \end{aligned}$	j j j j p j p j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie des Massenstrom b Massenstrom b trockene Luft Massenstrom b trockene Luft Enthalpie des Massenstrom a Enthalpie des Massenstrom a Enthalpie des Massenstrom b Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k1/kg kg/s k1/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k
Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen **/ Feuchtegrad der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} = & \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} = & \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} = & \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{A} - & \boldsymbol{h}_{m} = & \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{m}}_{La} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{m} - \dot{\boldsymbol{h}}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{x}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \end{aligned}$	j j j j p j p j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom trockene Luft Massenstrom a trockene Luft Massenstrom b trockene Luft Massenstrom b trockene Luft Enthalpie des Massenstrom a Enthalpie des Massenstrom a Enthalpie des Massenstrom b Massenstrom b trockene Luft Massenstrom b trockene Luft Massenstrom b trockene Luft Massenstrom b trockene Luft Massenstrom a trockene Luft	K 1 1 bar bar kW kg/s k/kg kg/s kg/s kg/s kg/s kg/s kg/s
Wärmeleistung kW Kälteleistung kW Mischung zweier feuchten Luftmengen Enthalpie der Mischung zweier feuchten Luftmengen **/ Feuchtegrad der Mischung zweier feuchten Luftmengen	$\begin{aligned} \dot{\boldsymbol{J}}_{ist} = & \dot{\boldsymbol{J}}_{Dia} \cdot \frac{\boldsymbol{p}_{ist}}{\boldsymbol{p}_{Dia}} \\ \dot{\boldsymbol{Q}}_{H} = & \boldsymbol{P}_{H} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} > 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{Q}}_{K} = & \boldsymbol{P}_{K} = \dot{\boldsymbol{m}}_{L} \cdot \Delta \boldsymbol{h} < 0 \\ \dot{\boldsymbol{m}}_{L} = & \dot{\boldsymbol{m}}_{La} + \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{A} - & \boldsymbol{h}_{m} = & \frac{\boldsymbol{x}_{m} - \boldsymbol{x}_{b}}{\boldsymbol{x}_{a} - \boldsymbol{x}_{m}} = \frac{\dot{\boldsymbol{m}}_{La}}{\dot{\boldsymbol{m}}_{Lb}} \\ \dot{\boldsymbol{m}}_{Lb} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{a} + \dot{\boldsymbol{m}}_{Lb} \cdot \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} + & \dot{\boldsymbol{m}}_{Lb} \\ \dot{\boldsymbol{m}}_{La} = & \dot{\boldsymbol{m}}_{L} \cdot \dot{\boldsymbol{h}}_{m} - \boldsymbol{h}_{b} \\ \dot{\boldsymbol{m}}_{La} - & \dot{\boldsymbol{h}}_{b} - \boldsymbol{h}_{b} \end{aligned}$	j j j j p j p j p j p j j j	Vorhandene rel. Feuchte Rel. Feuchte aus Diagramm Vorhandener Druck Druck für Diagramm (1,01325bar) Wärmeleistung Massenstrom trockene Luft Enthalpiedifferenz Kälteleistung Massenstrom trockene Luft Enthalpiedifferenz Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie der Mischung Enthalpie des Massenstrom a Enthalpie des Massenstrom b Feuchtegrad der Mischung Feuchtegrad des Massenstrom a Feuchtegrad des Massenstrom b Massenstrom trockene Luft Massenstrom trockene Luft Massenstrom a trockene Luft Enthalpie des Massenstrom b Massenstrom b trockene Luft Massenstrom b trockene Luft Enthalpie des Massenstrom a Enthalpie des Massenstrom a Enthalpie des Massenstrom b Massenstrom trockene Luft	K 1 1 bar bar kW kg/s k1/kg kg/s k1/kg kg/s kg/s kg/s kg/s kg/s kg/s kg/s k

	Wärmeübertragung			
Fouriersche Gleichung) Warmernge	$Q_{\lambda} = \frac{\lambda}{\delta} \cdot A \cdot (t_1 - t_2) \cdot \tau$	Q_{λ} λ δ	Warmemenge Warmeleitzahl S.325-327 Wanddicke	J,kJ w/Km m
	WÄRMELEITUNG (KONDUKTION)	τ t ₁ -t ₂ Α	Zeit Temperaturdifferenz Fläche ± Wärmestrom- richtung	s K m²
Wärmestrom	$\Phi = \dot{Q}_{\lambda} = \frac{\lambda}{\delta} \cdot A \cdot (t_1 - t_2)$	Φ λ δ	Wärmestrom Wärmeleitzahl S.325-327 Wänddicke	W W/Km M
		t ₁ -t ₂ A	Temperaturdifferenz Fläche ± Wärmestrom- richtung	m²
spezifischer Wärmestrom	$\varphi = \frac{\Phi}{A} = \frac{\lambda}{\delta} \cdot (t_1 - t_2) ; \varphi = \dot{q}_{\lambda}$	φ λ δ t ₁ -t ₂	spez. Warmestrom Warmeleitzahl: S.325-327 Wanddicke Temperaturdifferenz	W/m² W/Km M K
Värmewiderstand Wärmewiderstand = Temperaturgefälle Wärmestrom	$R_{\lambda} = \frac{\Delta t}{\Phi} = \frac{\delta}{\lambda \cdot A}$	R _λ Φ λ	Warmewiderstand Warmestrom Warmeleitzahl S 325-327 Wanddicke	₩ ₩ ₩ ₩
VVAITIESIIOII	$R_{\lambda_{\text{gen}}} = \sum_{i=1}^{n} R_{\lambda i} = \frac{1}{A} \sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}} = \frac{\Delta t}{\Phi}$	Δt A	Temperaturgefälle Fläche I Wärmestrom- richtung	K m²
Wärmestrom durch mehr- schichtige Wand	$\Phi = \frac{A \cdot (t_1 - t_{n+1})}{\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \dots + \frac{\delta_n}{\lambda_n}} = \frac{\Delta t}{R_{\lambda_3 e5}}$	Φ λ δ t ₁	Wärmestrom Wärmeleitzahl [®] S 325-327 Wanddicke Anfangstemperatur Endtemperatur	W w/Km m K K
	t2 = to (A	Fläche i Wärmestrom- richtung Anz. der Schichten	m²
mittlere Temperatur / Temperaturd: ([exens	$t_{m} = \frac{t_{1} + t_{2}}{2} \qquad ; \qquad t_{1} - t_{2} = \frac{\phi \cdot \delta_{1}}{\lambda_{1}}$			

Warmenbertragung

(·Warmelbitung (Konduktion)) Warmedurchgang ·Warmelbergang (Konvolction))

1678 L. Cott Lower Land Color Color		<u>بة.</u>	TAIR man a series	107
Wärmeübergang durch	Körper 1: $\dot{Q}_{12} = A \cdot \dot{E}_1 + r_1 \cdot \dot{Q}_{21}$	Φ C ₁₂	Wärmestrom Strahlungsaustauschkoelf	W
Strahlung	Körper 2: $\dot{Q}_{21} = A \cdot \dot{E}_2 + r_2 \cdot \dot{Q}_{12}$	A ₁	Wandfläche bei A ₁ =A ₂ =A	w/æ*k⁴ M²
7 = konst	21 1 2 1 2	T_1	Temp. Körper 1	K
		T ₂	Temp. Körper 2	K
$E_{i,A}$, g_{ij}	$\Phi = \dot{Q} = \dot{Q}_{12} - \dot{Q}_{12}$ beid=0; r=1- ϵ	ا ا	Reflexionskoeff, Körper 1	1
2-///50.7		Γ ₂	Reflexionskoeff, Körper 1	1
	[, ,4 , ,4] :	E°,	Energiestrom Körper 1	W/m²
	$\Phi = C_{12} \cdot A_1 \cdot \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] $ (s.v.)	E°2	Energiestrom Körper 2	W/m²
	$\Phi = C_{12} \cdot A_1 \cdot (100) - (100)$	Q° ₁₂	Gesamtenergie Köper 1	W
	[(5.4)	Q°21	Gesamtenergie Köper 1	W
Stahlungsaustauschkonst.	C.	C ₁₂	Strahlungsaustauschkoeff	W/m²K⁴
ebene Wand (A ₃ =A ₂ =A)	$C_{12} = \frac{C_s}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$	C _s	Strahlungskonst schw. K.	W/m²X¹
		٤1	Emissionskoeff, S. 349	1
	ε ₁ ε ₂	ϵ_2	Emissionskoeff, S. 349	1
für Innenrohr 🏎.	C - C _s	A ₁	Oberff: Innenrohr	m² m²
	$C_{12} = \frac{C_s}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} \cdot \left(\frac{1}{\varepsilon_2} - 1\right)}$	A ₂	Mantelrorfl. Außenrohr	, '''
$A_{\lambda} \neq A_{2}$	-+-			
		-		
	$C = C_s$			
I .	$U_{12} = \frac{\omega}{1} = \frac{\omega}{A_{12}}$			
1	$\frac{-}{6} + \omega \cdot \left \frac{-}{2} - 1 \right $			
[³	ε ₁ (ε ₂)	ł		
wenn $A_2 \gg A_1$	$C_{12} = \frac{C_s}{\frac{1}{\epsilon_1} + \omega \cdot \left(\frac{1}{\epsilon_2} - 1\right)} ; \omega = \frac{A_1}{A_2}$ $\omega = 0 \Rightarrow C_{12} = \epsilon_1 \cdot C_s'$	1		
(großer Raum mit kleinem Ofen)				
spez. Wärmeubergang durch	$[(+)^4 (+)^4]$	φ	spez. Warmestrom	W/m²
Strahlung	$\phi = \dot{q} = C_{12} \cdot \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$	C ₁₂	Strahlungsaustauschkoeff	W/m²K*
	(100) (100)	T ₁	Temp, Körper 1	К
		T ₂	Temp, Körper 2	K
Wärmeübergangskoeffizient	$\alpha_{s} = C_{12} \cdot \frac{\left(\frac{T_{1}}{100}\right)^{4} - \left(\frac{T_{2}}{100}\right)^{4}}{T_{1} - T_{2}}$	α_{s}	Koeff Stahlung	W/m³K
durch Strahlung	$\left \frac{1}{100} \right - \left \frac{2}{100} \right $	C ₁₂	Strahlungsaustauschkoeff	wm*ĸ' K
$\alpha_{S} = \frac{\Phi}{A(T_A - T_S)}$	$\alpha_s = C_{12} \cdot \frac{(100)^2 \cdot (100)^2}{7}$	T ₁	Temp, Körper 1	K
	1-12	T ₂	Temp, Körper 2	
Wärmeübergangskoeff:{durch	$\alpha_{\text{des}} = \alpha_{\text{s}} + \alpha_{\text{k}}$	α_{ges}	Koeff, Wärme + Konvekt	W/m²K
Stahlung und Konvektion)	300.	α_{s}	Koeff, Stahlung	W/m³K
		α_k	Koeff, Konv. S. 344	W/m³K
Wärmeübertragung	$\Phi = \alpha_{nes} \cdot A \cdot (T_1 - T_2)$	Φ	Wärmestrom	W
(Konvaldiors & Stratskusa)	A A	α_{ges}	Koeff, Warme + Konvekt	₩m²K
) 3	War Floret Out	A	Wandfläche	m²
J	Φ= α _{ges} ·A·(T ₁ -T ₂) A Korpe Florid (Left)	T	Temp, Fluid Temp, Wand	K
1279		T ₂		K
spez. Wärmeübertragung	$\varphi = \alpha_{ges} \cdot (T_1 - T_2)$	φ	spez, Wärmestrom	W/m;²
		α _{ges}	Koeff, Wärme + Konvekt Temp, Fluid	W/m²K K
		T ₁	Temp Wand	K K
	VAIR-meduzak	l '2		L'\
NATIONAL ACCOUNTS OF THE CONTRACTOR OF THE CONTR	Wärmedurchgang	isi	14(4)	
Wärmedurchgang ebene Wand	WÄRMEDURCHGANG	Φ	Wärmestrom	W
fu 2/6, 1000	111101000000000000000000000000000000000	k A	Wärmedurchgangszahl Wandfläche	W/m³K
Fluid 2	$\Phi = \mathbf{k} \cdot \mathbf{A} \cdot (\mathbf{t}_1 - \mathbf{t}_2)$	i A It₁	Temp warmeres Fluid	m² :
	`` ` /	t ₂	Temp. kätteres Fluid	K K
1 科学教例	_	`²		,
Fund 1	$\dot{\nu}$	1		
M 162 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A . 14/ . 1 & T	 		!
10-13/401-5	D= mw "sh ; mw " v			
Wärmedurchgangszahl	. 1	δ	Wanddicke	m
	K= -1	α	Warmeübergangsz S344	Wm³K
	$-\frac{1}{1} + \sum_{i=1}^{n} + \frac{1}{n}$	λ	Wärmeleitzahl S. 325-327	W/Km
	$\alpha_1 = \lambda_1 = \alpha_2$			

Wärmeleitwiderstand	* _ f	$ R_a $	Wärmeleitwiderst.	Ικν
(Yamio, magasiana	$R_{d} = \frac{t_1 - t_2}{\Phi} = \frac{1}{k \cdot A}$	R.	Wärmeilbergangswid.	KW
dunchagons		R.	Warmewiderstand	ΚM
T CU U	$R_{a} = R_{a} + R_{\lambda} + R_{\alpha}$, "		
Wärmedurchgang für mehr-	$\Phi = \frac{2 \cdot \pi \cdot \ell \cdot (t_1 - t_2)}{\frac{1}{\alpha_1 \cdot t_1} + \sum_{i=1}^{n} \frac{1}{\lambda_i} \cdot \ln \left(\frac{t_{i+1}}{t_i} \right) + \frac{1}{\alpha_2 \cdot t_{n+1}}}$	Φ	Wärmestrom	W
schichtige Zylinderwand	$\Phi = \frac{-\frac{(1-2)}{2}}{4}$	t ₁	Temp: Innen	K
,	$\frac{1}{1} + \frac{1}{2} - \frac{1}{1} \cdot \frac{1}{1} + \frac{1}{1}$	t ₂	Temp, außen	ļκ
		۲,	Innenradius	m
		r _{n+1}	Außenradius	m
18 170	7	lu .	Anzahl Wandschichten	1
From Komi-nt Ly	1 T	λ	Wärmeleitzahl	W/mi W/m/∗
1. 11.1. 1		α	Wärmeübergangszahl	m
Tovaca planguage	$ \Phi = \frac{1}{\frac{4 \cdot \pi \cdot (t_1 - t_2)}{\alpha_1 \cdot r_1^2 + \frac{1}{\lambda} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) + \frac{1}{\alpha_2 \cdot r_2^2}} $	6	Zylinderlänge	
Wärmedurchgang für ein-	$4 \cdot \pi \cdot (t_* - t_*)$	Φ	Wärmestrom	W
schichtige Kugelwand	$\Phi = \frac{1}{4} $	t ₁	*Temp, innen	K
		t ₂	Temp, außen	K
	$\alpha_1 \cdot r_1^2 \lambda (r_1 r_2) \alpha_2 \cdot r_2^2$	r ₁	Innenradius	m
		r ₂	Außenradius	lm
		λ	Wärmeleitzahl	W/m W/m
		α	Warmeübergangszahi	
	Wärmefauscher			
Värmestrom:	$\Phi = \mathbf{k} \cdot \mathbf{A} \cdot \Delta \mathbf{t}_{\mathbf{m}}$	Φ	Wärmestrom	∥ W
/ I it	00000 1	k	Wärmedurchgangszahl	a Wm'
At.	$\Phi = k \cdot A \cdot \frac{\Delta t_{\text{max}} - \Delta t_{\text{min}}}{\ln \left(\frac{\Delta t_{\text{max}}}{\Delta t}\right)}$	Α	Fläche Warmetauscher	m²
+ / / /	$\int_{-\infty} \left(\Delta t_{\text{max}} \right)$	Δt _m	millere log. Temp.diff.	K
	$\frac{1}{\sqrt{t}}$	∆t _{max}	=t _{a1} -t _{b1} Aniangstemp.	ļΚ
Stres .	* Train /	1	Stoff a - Anlangstemp. Stoff b = t _{A2} - t _{b2} Endlemp. Stoff a -	
		Δt _{min}	Endlemp. Sloff b	K
mittlere logarithmische	Δt – Δt			
Temperaturdifferenz	$\Delta t_{m} = \frac{\Delta t_{max} - \Delta t_{min}}{ln\left(\frac{\Delta t_{max}}{\Delta t_{min}}\right)}$.
	$\ln \frac{\Delta t_{\text{max}}}{\Delta t_{\text{max}}}$] '
	Δt_{\min}			
	$\Phi = m \cdot s \cdot (t + t)$	ļ · · · · ·		
	$\Phi = m_w \cdot c_p \cdot (t_1 - t_2)$			<u> </u>
	$\dot{m}_{\mathbf{w}} = \mathbf{p} \cdot \dot{\mathbf{V}} = \mathbf{p} \cdot \mathbf{A} \cdot \mathbf{c}$			
	V = A⋅c	1		
	V − V . C	<u></u>		

	Ähnlichkeitstheorie des Warmeuberga	ings.
Nußelt-Zahl	$Nu = \frac{\alpha \cdot \ell}{2}$	Nu Nußelt-Zähl
	$\frac{1}{\lambda}$	α Warmeübergangszahl wm'κ λ Warmeleitzahl wm'κ wmκ
		charakteristische Länge m
Reynolds-Zahl	$Re = \frac{W \cdot \ell}{L}$	Re Reynoldszahl 1 w Geschwindigkeit m/s
	ν	charakteristische Länge m
<u></u>		v kin Viskositát m²/s
Temperaturleitzahl	$a = \frac{\lambda}{\lambda}$	a Temperatürleitzahl 1 λ Warmeleitzahl w/mK
	ρ·c _p	ρ Dichte des Fluids kg/m³
Prandti⊧Zahil∴	Do 2 C	C _p spez Warmekap, p=const J/kgK Pr Prandtl-Zahl 1
Flaidi-Zani-	$Pr = \frac{Pe}{Re} = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$	a Temperaturleitzahl 1
	ile a κ	λ Warmeleitzahl W/mK
		c _p spez. Warmekap p=∞nsts J/kgK
		η dyn Viskosität kg/ms Pe Peclet-Zahl
Peclet-Zahl	$Pe = \frac{W \cdot \ell}{I}$	w Geschwindigkeit m/s
	a	a Temperaturleitzahl. 1 / charakteristische Länge m
Grashof-Zahi	a.v. At.h ³	Gr Grashof-Zahl 1
	$Gr = \frac{g \cdot \gamma \cdot \Delta t \cdot h^3}{v^2}$	g Fallbeschi 98 m/s² m/s²
		γ Raumausdehnungskoeft. 1/K Δt Temperaturdifferenz K
	$\Delta t = t_{Fluid} - t_{Wand}$; $\gamma = \frac{1}{T}$	v ikin. Viskositat m²/s
	T _f	T, Fluidtemp. K
Anhaliswerie	α [W/m²K]	Austronobelsstung di.
	Gase freie Konv. 5-25	Optimize Heightennehmaning
	erzw. Konv 12-120	\$ 100 J
	Wasser freie Konv. 70-700	kenna it
	erzw. Konv. 600-12000 Verdampfung 2000-12000	Marmonthergangskraff (2016)
	Verdampfung 2000-12000 Filmkondensation 4000-12000	Haritagar
	Tropfenkondensat. 35000-45000	Starty Hearty
		Konvekton 5 Film-eraamplung
	Wärmeübertragung durch Strahlung	Temperaturpetaba c₂ - c₂ in K
Auftreifen von Strahlung	WÄRME-	a Absorptionskoeff Autretine 1
a≡¶iursenwazel≪iper in=iu iurwelke Korper	a+r+d=1 STRAHLUNG	r Reflexionskoefi 1 d Durchlaßkoefi 1
d ≡ 0 furreste und filussige Korper		
Emissionskoeiiizieni	ε=a	a Absorptionskoeff Aurinimo 1 ε Emissionskoeff S. 3/9 1
Energiestrom	(T) ⁴	ϵ Emissionskoeff S 349 1 1 ϵ Emissionskoeff S 349 1
	$\dot{E} = \varepsilon \cdot C_s \cdot \left(\frac{T}{100}\right)^4$	C _s Strahlungskonst schw 1K
	(100)	T Temp. des Korpers K E° Engergiestrom W/m²
Strahlungskonstante des	$C = 567$ W $\times = 57740^{-8}$ W	Control Lagrange United States and Control of the C
schwarzen Körpers	$C_s = 5.67 \frac{W}{m^2 \cdot K^4}$ $0 = 5.67 \text{ AD}^{-8} \frac{W}{m^2 \cdot K}$	4
	1	发展的
Φ = O ₁₂ · A (T, 4 - T2)	$\mathcal{O}_{12} = \frac{\mathcal{O}}{\frac{1}{2} + \frac{1}{2} - 1}$ $\mathcal{O} = 5$	67.10-8 W

Zylindrische Wa	and
Warmestrom einschichtig $\Phi = \frac{\lambda \cdot 2 \cdot \pi \cdot \ell \cdot (t_1 - t_2)}{\ln \left(\frac{r_2}{r_1}\right)}$	$\begin{array}{ccccc} \Phi & \text{Wärmestrom} & \text{W} \\ \lambda & \text{Wärmeleitzahl} & \text{S.325-327} & \text{WKm} \\ \text{\angle} & \text{Zylinderlänge} & \text{m} \\ \text{t_1} & \text{Innentemperatur} & \text{K} \\ \text{t_2} & \text{Außentemperatur} & \text{K} \\ \text{r_1} & \text{Innenradius} & \text{m} \end{array}$
	r ₂ Außenradius m
Warneleitwiderstand $R_{\lambda} = \frac{t_1 - t_2}{\Phi} = \frac{\ln\left(\frac{r_2}{r_1}\right)}{\lambda \cdot 2 \cdot \pi \cdot \ell}$	R _λ Wärmeleitwiderstand K/W Φ Wärmestrom W λ Wärmeleitzahl S,325-327 W/Km / Zylinderlänge t ₁ Innentemperatur t ₂ Außentemperatur r ₁ innenradius m m
Marneleitwiderstand für mehrschichtige Zyl,-Wand $R_{\lambda \; ges} = \frac{t_4 - t_{n+1}}{\Phi} = R_{\lambda_1} + R_{\lambda_2} +$	t ₁ Innentemperatur K
$R_{\lambda,gss} = \frac{1}{2 \cdot \pi \cdot \ell} \cdot \left[\frac{1}{\lambda_1} \cdot \ln \left(\frac{r_2}{r_1} \right) + \frac{1}{\lambda_2} \cdot \ln \left(\frac{r_3}{r_2} \right) \right]$ Wärmestrom durch mehr-	$ \begin{array}{c c} -\frac{1}{\lambda_n} \cdot \ln \left(\frac{r_{n-1}}{r_n} \right) & \begin{array}{c} t_2 & \text{Außentemperatur} \\ r_1 & \text{Innenradius} \\ r_2 & \text{Außenradius} \end{array} & \begin{array}{c} r_n \\ m \\ m \end{array} $
schichtige Zylinderwand $\Phi = \frac{2 \cdot \pi \cdot \ell \cdot \left(t_1 - t_{n+1} - t_{n$	$\frac{1}{\lambda_n} \cdot \ln \left(\frac{r_{n+1}}{r_n} \right) = \begin{cases} \lambda & \text{Wärmeleitzahl. S.325-327} \\ \delta & \text{Vanddicke} \end{cases} $ $\frac{1}{\lambda_n} \cdot \ln \left(\frac{r_{n+1}}{r_n} \right) = \begin{cases} \lambda & \text{Wärmeleitzahl. S.325-327} \\ \delta & \text{Vanddicke} \end{cases} $ $\frac{1}{\lambda_n} \cdot \ln \left(\frac{r_{n+1}}{r_n} \right) = \begin{cases} \lambda & \text{Wärmeleitzahl. S.325-327} \\ \lambda & Missing and the properties of the properties$
Hohlkugelwar /armestrom	nd Φ Warmestrom W
Usilly the Halbkugst $\Phi = \frac{\lambda \cdot 4 \cdot \pi \cdot (t_1 - t_2)}{\frac{1}{r_1} - \frac{1}{r_2}}$	λ Wärmeleitzahl S 325-327 W/Km t ₁ Innentemperatur K K t ₂ Außentemperatur r ₁ Innenradius m
(Konvektion	
$\Phi = \dot{Q} = \alpha \cdot A \cdot \left(t_{\text{Fluid}} - t_{\text{Wand}}\right)$	α Wärmeübergangszahi m² A Wandfläche
100 Table 100 Ta	= 42 4/13
Wärmeübergangswiderstand $R_{\alpha} = \frac{t_{*} - t_{w}}{\Phi} = \frac{1}{\alpha \cdot A}$	R _α Wärmeßbergangswid: K/W Φ Wärmestrom W α Wärmeübergangszahl A Wandfläche t- Temp Fluid
	t _{Fluid} Temp Fluid t _{Wand} Temp. Wa nd

 $\textbf{T 6.1} \quad \text{Partialdruck des Wasserdampfes und absolute Feuchte (Partialdichte) in gesättigter feuchter Luft und anderen gesättigten Gasen^1$

					
t	$p_{\rm s}$	Q_{s}	t	$p_{\rm s}$	$arrho_{ m s}$
°C	bar	kg	°C	bar	kg
	l Dai	$\overline{\mathrm{m}^3}$		Vai	$\overline{\mathrm{m}^3}$
20	0.001020	0.000001	26	0.02260	0.02427
-20	0,001029	0,000881	26	0,03360	0,02437
-18	0,001247	0,001059	27	0,03564	0,02576
-16	0,001504	0,001267	28	0,03778	0,02723
-14	0,001809	0,001513	29	0,04004	0,02876
-12	0,002169	0,001800	30	0,04241	0,03037
-10	0,002594	0,002136	32	0,04753	0,03382
-8	0,003094	0,002529	34	0,05318	0,03759
-6	0,003681	0,002986	36	0,05940	0,04172
-4	0,004368	0,003517	38	0,06624	0,04624
-2	0,005172	0,004133	40	0,07375	0,05116
0	0,006108	0,004847	42	0,08198	0,05652
1	0,006566	0,005192	44	0,09100	0,06236
2	0,007055	0,005558	46	0,10086	0,06869
3	0,007575	0,005946	48	0,11162	0,07557
4	0,008129	0,006358	50	0,12335	0,08302
5	0,008718	0,006795	52	0,13613	0,09108
6	0,009345	0,007258	54	0,15002	0,09979
7	0,010012	0,007748	56	0,16511	0,1092
8	0,010720	0,008267	58	0,18147	0,1193
9	0,011472	0,008816	60	0,1992	0,1302
10	0,012270	0,009396	62	0,2184	0,1420
11	0,013116	0,01001	64	0,2391	0,1546
12	0,014014	0,01066	66	0,2615	0,1681
13	0,014965	0,01134	68	0,2856	0,1826
14	0,015973	0,01206	70	0,3116	0,1982
15	0,017039	0,01282	72	0,3396	0,2148
16	0,018168	0,01363	74	0,3696	0,2326
17	0,019362	0,01447	76	0,4019	0,2515
18	0,02062	0,01536	78	0,4365	0,2718
19	0,02196	0,01630	80	0,4736	0,2933
20	0,02337	0,01729	90	0,7011	0,4235
21	0,02485	0,01833	100	1,0133	0,5977
22	0,02642	0,01942		,	
23	0,02808	0,02057			
24	0,02982	0,02177			
25	0,03166	0,02304			
	1 -, 2 0 0				

T8.2 Wärmeübertragungseigenschaften einiger Flüssigkeiten¹

Stoff	, C	$\frac{\varrho}{m^3}$	$\frac{c_p}{\mathrm{kJ}}$	$\frac{\lambda}{K m}$	γ <u>Κ</u>	$\frac{\eta}{\frac{kg}{ms} = \frac{Ns}{m^2}}$	$\frac{v}{s}$	$\frac{a}{\frac{m^2}{s}}$	Pr -
Ammoniak (NH ₃) Wasser Wasser Wasser Wasser Wasser Transformatorenöl Transformatorenöl	20 0 20 60 100 200 40 80	610 999,8 998,2 983 958 865 865 854	4,77 4,217 4,182 4,184 4,216 4,216 4,499 1,99 2,09	0,494 0,555 0,598 0,651 0,681 0,665 0,123	0,00244 0,00006 0,00020 0,00054 0,00078 0,00155 0,00069	220.10 ⁻⁶ 1790.10 ⁻⁶ 1002.10 ⁻⁶ 469.10 ⁻⁶ 282.10 ⁻⁶ 138.10 ⁻⁶ 14220.10 ⁻⁶	0,361.10-6 1,789.10-6 1,006.10-6 0,478.10-6 0,294.10-6 0,160.10-6 16,7 .10-6 5,2 .10-6	0,17.10 ⁻⁶ 0,132.10 ⁻⁶ 0,143.10 ⁻⁶ 0,159.10 ⁻⁶ 0,169.10 ⁻⁶ 0,171.10 ⁻⁶ 0,072.10 ⁻⁶ 0,066.10 ⁻⁶	2,12 13,6 7,03 3,01 1,75 0,94 230 79,4

¹ Bei 0,980665 bar. Wenn der Dampfdruck größer ist, bei dem zu der genannten Temperatur gehörenden Sättigungsdruck.

T8.3b Wärmeübertragungseigenschaften einiger Gase bei 0,980665 bar²

Stoff	J.	$\frac{\varrho}{kg}$ m^3	$\frac{c_p}{\mathrm{kJ}}$	λ W K m	$\frac{\eta}{m s} = \frac{Ns}{m^2}$	$\frac{v}{m^2}$	$\frac{a}{m^2}$	Pr _
Kohlendioxid (CO ₂) Kohlenmonoxid (CO) Sauerstoff (O ₂) Schwefeldioxid (SO ₂) Stickstoff (N ₂) Wasserdampf (H ₂ O) Wasserdampf (H ₂ O)	50 0 20 0 100 400	1,617 1,210 1,289 2,832 1,210 0,578 0,452 0,316	0,875 1,040 0,915 0,609 1,039 1,88 1,93 2,05	0,0178 0,022 0,026 0,0084 0,023 0,0242 0,0328	16,2 · 10 ⁻⁶ 16,6 · 10 ⁻⁶ 20,3 · 10 ⁻⁶ 11,6 · 10 ⁻⁶ 16,6 · 10 ⁻⁶ 12,8 · 10 ⁻⁶ 16,6 · 10 ⁻⁶ 23,5 · 10 ⁻⁶	10,0 .10-6 13,28.10-6 18,4 .10-6 4,1 .10-6 13,26.10-6 22,1 .10-6 36,8 .10-6 74,4 .10-6	12,6 .10 ⁻⁶ 16,74·10 ⁻⁶ 25,7 .10 ⁻⁶ 4,76·10 ⁻⁶ 18,3 .10 ⁻⁶ 19,6 .10 ⁻⁶ 37,6 .10 ⁻⁶ 85,0 .10 ⁻⁶	0,80 0,794 0,716 0,86 0,725 1,12 0,97 0,88
Wasserstoff (H ₂) Ammoniak (NH ₃)	100	0,073 <i>5</i> 0,540	14,4 2,23	0,202		$128 \cdot 10^{-6}$ $24,1 \cdot 10^{-6}$	$191 \cdot 10^{-6}$ $24,9 \cdot 10^{-6}$	0,67 0,97

Temperaturabhängigkeit der Wärmeleitfähigkeit λ (näherungsweise) bei 0,980665 bar

 $\{\lambda\} = 0.0242 \ (1 + 0.003 \ \{t\}) \ \text{in W/K} \cdot \text{m}$ $\{\lambda\} = 0.0143 \ (1 + 0.004 \ \{t\}) \ \text{in W/K} \cdot \text{m}$ $\{\lambda\} = 0.176 \ (1 + 0.003 \ \{t\}) \ \text{in W/K} \cdot \text{m}$ Kohlendioxid (CO₂) Wasserstoff (H₂)

Luft

 2 ϱ und c_p teilweise aus T 2.1 berechnet. Werte aus Gröber / Erk / Grigull [9].

 $\gamma = \frac{1}{T_{\rm f}}$ (s. Erläuterungen zu Gl 8.14) $v = v_{\text{Tab}} \frac{p_{\text{Tab}}}{p}$

T8.1 Wärmeübertragungseigenschaften einiger fester Stoffe¹

	t °C	$\frac{\varrho}{\frac{kg}{m^3}}$	c kJ kg K	λ W K m	$\frac{a}{\frac{m^2}{s}}$
Aluminium 99,75	20	2700	0,896	229	94,6 · 10 - 6
Stahl, unlegiert	0	7850	0,465	59	$16,2 \cdot 10^{-6}$
Stahl, unlegiert	200	7800	0,535	52	$12,5 \cdot 10^{-6}$
Stahl, unlegiert	400	7730	0,630	44	$9,0 \cdot 10^{-6}$
Kupfer, Handelsware	20	8300	0,419	372	$107 \cdot 10^{-6}$
Messing	20	8600	0,381	81 – 116	$25 - 35 \cdot 10^{-6}$
Zink	20	7130	0,835	113	39 ·10 ⁻⁶
Kiesbeton	20	2200	0,879	1,28	$0,66 \cdot 10^{-6}$
Fensterglas	20	2480	0,70-0,93	1,16	$0.59 \cdot 10^{-6}$
Ziegelmauerwerk	20	1420 1460	_	0,76	$0.55 \cdot 10^{-6}$
Glaswolle	25	120	0,66	0,046	$0.58 \cdot 10^{-6}$

Werte aus Gröber/Erk/Grigull [9], erweitert durch Werte aus Stephan/Mayinger [6].

T8.3a Wärmeübertragungseigenschaften von trockener Luft bei 1 bar¹

t	Q	c_p	λ	η	ν	а	Pr
°C	$\frac{kg}{m^3}$	$\frac{kJ}{kg K}$	W/K m	$\frac{\mathbf{kg}}{\mathbf{m}\mathbf{s}}$	$\frac{\mathrm{m}^2}{\mathrm{s}}$	$\frac{\mathrm{m}^2}{\mathrm{s}}$	_
-20	1,3765	1,007	0,02263	$16,22 \cdot 10^{-6}$	11,78 · 10 - 6	16,33 · 10 - 6	0,7215
0	1,2754	1,004	0,02418	$17,24 \cdot 10^{-6}$	$13,52 \cdot 10^{-6}$	$18,83 \cdot 10^{-6}$	0,7179
20	1,1881	1,007	0,02569	$18,24 \cdot 10^{-6}$	$15,35 \cdot 10^{-6}$	$21,47 \cdot 10^{-6}$	0,7148
40	1,1120	1,007	0,02716	$19,20 \cdot 10^{-6}$	$17,26 \cdot 10^{-6}$	$24,24 \cdot 10^{-6}$	0,7122
60	1,0452	1,009	0,02860	$20,14 \cdot 10^{-6}$	$19,27 \cdot 10^{-6}$	$27,13 \cdot 10^{-6}$	0,7100
80	0,9859	1,010	0,03001	$21,05 \cdot 10^{-6}$	$21,35 \cdot 10^{-6}$	$30,14 \cdot 10^{-6}$	0,7083
100	0,9329	1,012	0,03139	$21,94 \cdot 10^{-6}$	$23,51 \cdot 10^{-6}$	$33,26 \cdot 10^{-6}$	0,7070
120	0,8854	1,014	0,03275	$22,80 \cdot 10^{-6}$	$25,75 \cdot 10^{-6}$	$36,48 \cdot 10^{-6}$	0,7060
140	0,8425	1,016	0,03408	$23,65 \cdot 10^{-6}$	$28,07 \cdot 10^{-6}$	$39,80 \cdot 10^{-6}$	0,7054
160	0,8036	1,019	0,03539	$24,48 \cdot 10^{-6}$	$30,46 \cdot 10^{-6}$	43,21 · 10 - 6	0,7050
180	0,7681	1,022	0,03668	$25,29 \cdot 10^{-6}$	$32,93 \cdot 10^{-6}$	46,71 · 10 ^{- 6}	0,7049
200	0,7356	1,026	0,03795	$26,09 \cdot 10^{-6}$	$35,47 \cdot 10^{-6}$	50,30 · 10 ^{- 6}	0,7051
250	0,6653	1,035	0,04106	$28,02 \cdot 10^{-6}$	$42,11 \cdot 10^{-6}$	59,62·10 ⁻⁶	0,7063
300	0,6072	1,046	0,04409	$29,86 \cdot 10^{-6}$	$49,18 \cdot 10^{-6}$	69,43 · 10 - 6	0,7083
400	0,5170	1,069	0,04996	$33,35 \cdot 10^{-6}$	$64,51 \cdot 10^{-6}$	90,38 10-6	0,7137
500	0,4502	1,093	0,05564	$36,62 \cdot 10^{-6}$	$81,35 \cdot 10^{-6}$	$113,1 \cdot 10^{-6}$	0,7194
600	0,3986	1,116	0,06114	$39,71 \cdot 10^{-6}$	$99,63 \cdot 10^{-6}$	$137,5 \cdot 10^{-6}$	0,7247
700	0,3576	1,137	0,06646	$42,66 \cdot 10^{-6}$	$119,3 \cdot 10^{-6}$	$163,5 \cdot 10^{-6}$	0,7295
800	0,3243	1,155	0,07154	$45,48 \cdot 10^{-6}$	$140,2 \cdot 10^{-6}$	$191,0 \cdot 10^{-6}$	0,7342
900	0,2967	1,171	0,07633	$48,19 \cdot 10^{-6}$	$162,4 \cdot 10^{-6}$	$219,7 \cdot 10^{-6}$	0,7395
1000	0,2734	1,185	0,08077	50,82 · 10 - 6	185,9 · 10 ⁻⁶	249,2 ·10 ⁻⁶	0,7458

Werte aus VDI-Wärmeatlas. Auszug [10], c_p bei 0 °C nach Baehr [1] und Stephan/Mayinger [6].

T 8.5 Wärmeübergangskoeffizienten (Anhaltswerte)

	 Wärmeübergang	skoeffizient α in $\frac{W}{m^2 K}$
	erreichbare Werte	in der Praxis übliche Werte
1. Gase und Dämpfe		
freie Strömung	5 · · · 25	8 · · · 15
erzwungene Strömung	12 · · · 120	20 · · · 60
2. Wasser		
freie Strömung	70 700	200 · · · 400
erzwungene Strömung	600 · · · 12000	2000 · · · 4000
Verdampfung	2000 · · · 12000	ca. 4000
Filmkondensation	4000 · · · 12000	ca. 6000
Tropfenkondensation	35000 · · · 45000	_
3. Zähe Flüssigkeiten erzwungene Strömung	60 · · · 600	300 · · · 400